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Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system
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The stability of the one-mode nonlinear solutions of the Fermi-Pasta-\Blasystem is numerically inves-
tigated. No external perturbation is considered for the one-mode exact analytical solutions, the only perturba-
tion being that introduced by computational errors in the numerical integration of motion equations. The
threshold energy for the excitation of the other normal modes and the dynamics of this excitation are studied
as a function of the parametgr characterizing the nonlinearity, the energy dengitgnd the numbeN of
particles of the system. The results achieved confirm in part previous ones, obtained with a linear analysis of
the problem of the stability, and clarify the dynamics by which a one-mode exchanges energy with the other
modes with increasing energy density. In a range of energy density near the threshold value and for various
values of the number of particlé§ the nonlinear one-mode exchanges energy with the other linear modes for
a very short time, immediately recovering all its initial energy. This sort of recurrence is very similar to Fermi
recurrences, even if in the Fermi recurrences the energy of the initially excited mode changes continuously and
only periodically recovers its initial value. A tentative explanation for this intermittent behavior, in terms of
Floquet's theorem, is proposed. Preliminary results are also presented for the Fermi-Pasta-Ejatem
which show that there is a stability threshold, for lafgeindependent oN.
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I. INTRODUCTION the nonlinear modes can provide an “upper bound” estimate
for the onset of large scale chaos. The analysis of the stabil-
Since the computer experiment of Fermi, Pasta, and Ularity of a generic OMS is very difficult from a mathematical
(FPU) [1], many theoretical and numerical investigations fol- point of view. Only for the case=N/2 are there analytical
lowed to explain the unexpected results of the experimentesults(see, for example, Ref§18—21]) which estimate the
[2—7]. What one expected according to a theorem of Pointhreshold energy density for the mode to become unstable. In
care[8] and a theorem proved by Feriff] himself in his  fact the moden=N/2 is the simplest one, since the different
youth, and what was instead observed, has been describeddomponents of the perturbation, in modal space, are all de-
several paperésee, e.g., Ref.10]) in which various aspects coupled and are described by a single Lagoeation.
of the experiment have been analyzed in the framework of In this paper we numerically revisit the problem of the
the KAM theorem[11], the ergodic problemhl2], statistical  stability of OMSs. We make a numerical study of the stabil-
mechanics, and the chaotic behavior of dynamical systemigy of OMSs as a function of the numbét of particles and
[13-15. the productew, wheree is the energy density and is the
It is well known[16,17] that, for a periodic FPUB chain  parameter of nonlinearity in the Hamiltonian of the system.
with an even number of oscillators, an initial condition with The analysis, based on the numerical integration of the full
only a set of excited modes, all having evédd indices  nonlinear FPU model, is extensively made for the case
only, cannot lead to the excitation of modes having odd>0. Preliminary results are also presented for the qase
(even indices. This means that, if one considers the set of alkc0. No external perturbation is considered for the OMS, the
modes partitioned in the two subsets of the even and oddnly perturbation being that introduced by computational er-
modes, an initial excitation, completely contained in one ofrors in numerical integration of motion equations. This
the two subsets, cannot propagate to the other. simple method works very well: our results confirm previous
There are also other partitions. For example, partitionsnes obtained with a linear analysis of the problem of the
exist for which a subset contains one mode dril§]. More  stability [18—21] and clarify the dynamics by which a non-

specifically, for each of the modes linear one-mode exchanges energy with the other linear
modes, with increasing energy densities. We find that, in a
e N N N EN' §N D large range of initial excitation energy density, the energy of

4’ 3' 2' 3 the OMSs remains constant for very long intervals of time,
and for short intervals there is partial transfer to other linear
[of course whemN has the divisibility property required for ~ modes; furthermore the OMSs corresponding to the two val-
in Eq. (1) to be an integdrone has that, if only one of these uesn=N/4 andn= 3N and the OMSs corresponding to
modes is initially excited, it remains excited without trans- =N/3 andn= 3N have the same stability properties.
ferring energy to any other mode. As regards the FPW system, we find that the OMIS/2

An important problem is obviously the stability of these is not always instable for very large valueshyfindependent
one-mode solutionOMSs, since it is reasonable to expect of the sign of the nonlinearity parameter Our results are in
some relation between the loss of their stability and the onsatisagreement with those of R¢fL9] and in agreement with

of chaos in the system. In some sense, the destabilization ¢iose of Ref[21].
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Il. FPU SYSTEM

The FPU system is a one-dimensional chain of oscillators

(with unit mas$, with a weakly nonlinear nearest-neighbor
interaction. Callingq,, and p,, the coordinates and the mo-
menta of the oscillators, we have the Hamiltonian

N N
9
H= D (U= A%+ = 2 (U= A",
k=1 I k=1
(2

with r =3 for the FPUa systemy =4 for the FPUB system,

N| =

N
> pi+
k=1

N =

andqy.1=0; in both cases. We remark that all quantities in

Eq. (2) are dimensionless.
If we introduce the normal coordinat€}, and P, of the
normal modes through the relations

N
Q=2 S )
N
Pk:jgl SkiPj (4)
1 27K] 27K] 5
Skj—\/—N S'”T+COST , (5)
the harmonic energy of modeis
1 2 22
EkZE(Pk"‘ 0 Qp), (6)
where, in the case of periodic boundary conditions,
k
w2 =4 sir?%. (7)

Sincew,= wy_k, there are onl\N/2 different frequencie&f
we assumeN even, for simplicity.
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Cij = = Digjrkrt T Dtk P A k1 T A ke
9)

being A= (—1)" for k=mN, if mis a positive integer, and
A =0 otherwise.

The nonlinear OMSs correspond to the valuesnafe-
ported in Eq.(1). From Eqgs.(8) and (9), one deduce§l18]
that, if only one of these modes is initially excited, it remains
excited without transferring energy to any other mode. In this
case, the equation of motion for the excited mode amplitude

Qnis

4
2 #@nChnnn

= ann 2N (10)

Qn Qs

If we assume that at time=0 Q,#0 andP,=0, the
solution of Eq.(10) is
Qn(t)=Acn(Q,t,k),

where(},, and the modulug of the Jacobi elliptic function
cn both depend oA:

(11

Qp=w W1+ 6,A% (12
5,A?
=\ (13
2(1+ 6,A%)

with 8,= ww3Cpnnd2N.

Solution (11) is periodic with period T,=4K(k)/Q,
whereK (k) is the complete elliptic integral of the first kind.
The energy of the mode is

1
En=5| Pi+onQn+u (14

wﬁQﬁCnnnn
aN-

The stability properties of the nonlinear motig#2 was
studied analytically some years ago. In Rd®], the stabil-

From Eq.(2), the Hamilton equations are obtained in the ity analysis of this mode starts from the equations of motion

variablesg, andp,, which, integrated by standard methods,

for the variablesy, . From Eq.(3) and the properties d;

allow one to calculate the normal modes and the energy ofne has, if the only excited mode is the mdd:

each mode.

Ill. ONE-MODE SOLUTIONS

From now on we refer only to the FPP3 system. For
wu=0, all normal modes oscillate independently and thei

ablesQ, do not have simple sinusoidal oscillations. The dif-
ferential equation for th&th mode is[18]

) N-1
Qk:_wEQk_% 2 ;w0 Cyi; QiQ;Q
1,1
(k=1,...N-1), ®)

where

r

1
qk=J—N(—1)k Qne, k=1,2,...N. (15

These relations imply that the equations of motion reduce to
a single equation, describing the anharmonic oscillations of

%ach particle, whose solution is the Jacobi elliptic cosine
(u#0), the normal modes are instead coupled and the vari P : P

Function. Perturbing this solution, and passing to normal
modes variable€, one obtains a Lamequation. The sta-
bility of the solutions of this equation, which is an example
of Hill's equation, and then the stability of the mobl2, is
studied with the Floquet theory. A numerical analysis shows
that the first modes which are excited, as the energy density
increases, are the modks-N/2—1 andN/2+1. A simple
approximate formula, valid for larghl and x=1, and de-
rived approximating Hill's matrix with a & 3 matrix, gives,

for the threshold energy density,
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_E,3.226
fTN NE

+0(N™%). (16)

The problem of stability of the modg/2 was also tackled in
Ref.[20]. In the limit of largeN, the formula

E, @? 329

-t 1
N 3N2 N2 @

€t

was derived for the threshold energy density. This result i
slightly different from Eq.(16) and the small difference is

trum of the Hill's matrix in Ref.[19].

The problem of stability of an OMS was reconsidered

subsequently in Ref[18] with a detailed analysis of the

seen, the different components of the perturbation, in mod
space, are all decoupled and can be reduced to the sin
Lame equation

mode N/2. This is the simplest case, because, as we ha\;g

12,LLAZC nZ(QN/zt; k)
N

2
r

r=1,...N-1.
(18)

Xy =—w r

To obtain this equation in a very simple way, we observe

that, from Eq.(2), with r=4, one has

Pk= i+ 1+ A1~ 20+ [ (Aies 1= A0 3 — (Qe— - 1) %1

If the coordinatesq are affected by some error, then the
error on thep,, Apy, will be

APg= Ay 1+ Alk—1— 220+ 31 (Ges 1~ i) ?
X (A1~ A0) = (A= k- 1) 2(Ad— Adk—1)],
and then from Eq(15) we have
. 12n
Ap=A0ks 1+ Ad-1—2A0,+ WQ N/2
X[AQer1 T AQk-1—2A0].
Since Aqy=Apy, the last equation reads:
12u
1+ TQZN/Z

AQy= [Adks1— 200+ Agy-1].

Passing to modal variabl€g,, we finally have

=— w0’ (19

AQy

12u
1+ WQZN/Z} AQy,

which is Eq.(18).

Let B=€eu. As it is well known, this parameter is invari-
ant under the scale transformatiom,—AN"1p,, qy
—AN"1q, and u— X\ "2N?u, where\ is the scale param-
eter. So the dynamics of the FR®Jsystem depends only on
the control parameteB=eu.

Let us introduce the quantity
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p=sirt(mr/N), (20)
wherer is the mode number. The main results of the stability
analysis reported in Ref18] are as follows.

(&) For each mode having>1/3, there is a threshold
value B; of 8 above which the nonlinear moae=N/2 pre-
sents an instability, causing the growth of the mode corre-
sponding top, through parametric resonance.

(b) Conversely, modes with<<1/3 (i.e.,r/N<0.196) are
always stable in the linear approximation for any energy den-

%ity of moden=N/2, so that perturbations of this mode in-

volving only modes withp<1/3 never lead to instability.

“fhese modes, as well as modes with 1/3, whenB< g,

can grow only if they are triggered by the interaction with
other modes which are unstable.

(c) ForN=4 there are always modes wigh>1/3, so that

e modeN/2 can never be stable for all energy densities.
inceB, is a decreasing function @f, the first modes to go

gu(?1stable, wherg is increased from zero, are the modes

=N/2—1 andr=N/2+1, for which p=cog(a/N). There-
fore, for each(even numberN of particles, there is a non-
zero value ofB;, a function ofN, below which the nonlinear
mode N/2 is stable. This value tends to zero fiSF— o,
namely,p—1.

(d) Using a power series expansion, one obtains,dpr
the formula,

2

'
ﬂt:WﬂLO(N*“), (21)

which confirms the\ 2 dependence found in Refd.9] and
[20] and the numerical value?/3 of the coefficient of M?
in Ref.[20].

IV. NUMERICAL RESULTS FOR THE CASE N/2

In this section, we present the results of our numerical
analysis of the stability of the OMS corresponding ro
=N/2, as a function of3 and of the numbeN of patrticles,
based on the numerical integration of the full nonlinear FPU
model directly in variableg), and p,. More precisely, we
integrate the equations of motion in the variabdgsand py
by means of a bilinear symplectic algorithm of the third or-
der, adapted from an algorithm employed previously by Ca-
setti [22]. Initial conditions for the variableg, and p, are
obtained in the following way. We excite the OMS, tat
=0, always puttingQy;# 0 andPy,=0. In all numerical
experiments we fixy=0.1 and change the value of the en-
ergy densitye=Ey;/N, where

4 4
on2QN2

TN (22

E _E P2 1 w2 02 4
N2T 5| PN oN2QN2T 1

is the energy of the nonlinear one-moN&. If we fix the
initial value of Ey, (or equivalentlye), the initial value of
Qny2 is obtained from Eq(22) with Py,=0. Finally, from
inverse transformations of Eq¢$3) and (4), the values of
qx(0) andp,(0) are obtained.
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The normal coordinate®y,, and Py, of the nonlinear For N=32, we haves,= 7%/3N?=0.00321. We consider

one-mode and the normal coordina@sandP, of the other three values of3: the first one,8=0.001, smaller thaiB;,
normal modes are calculated at fixed time intervals, multhe second oneB=0.005, larger and the third3=0.1,
tiples of the integration step. Then the study of the stabilitymuch larger thaiB; . In Fig. 1, the behavior of the nonlinear
of the OMS is made through the analysis of both the timemode in the plane@;4,P1¢) andQ4¢ as a function of time,
evolution of Qy, and Py, and the evolution of the other for these three values @, are shown.
modesQ, and P, which are generated through computa- From an inspection of this figure, we observe that, for
tional errors. very smallg, specifically well below the threshold value, the
For the numerical integration, we use an integration timenonlinear OMSN/2 is stable and¢ is a periodic function
stepAt equal to 0.01. This value is approximately 1/300 of with the same amplitude and same period of the analytical
the smallest period of oscillation in the harmonic case andolution. Forg=0.005, above the threshold, the situation is
allows us to obtain a control of the total energyof the  very different. The period of oscillation is equal to the period
lattice, which ensures a relative err&rE/E<10"°. of the analytical solution and, for very long times, the repre-
To illustrate the various steps of our method of numericalsentative point moves on a closed curve, in the plapg;(
analysis, let us consider the cade=-32 and thus the OMS P, as for values of very smaB; but now, periodically and
N/2=16. In this caseC,,,,=2, and we have formul&2)  for short intervals of time, the amplitude of the oscillation
for the energy of the nonlinear mode. We take a value of thearies, due to a decrease of the modal energy, and the repre-
energy densitye and integrate the equations of motion for sentative point of the system moves on an open curve which
the variableg), andpy . The integration time is fixed in such tends periodically to shrink. Fg8=0.1, well aboves;, we
a way as to observe the instability of nonlinear mode, if theobserve a behavior which is probably chaotic. This behavior
value of B=eu is greater than the theoretical valgg[Eq. is also evident if we analyze the modal energy of the mode
(21)]. Typical values of this time are of order é0t. N/2 as a function of time for different values of the
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FIG. 2. Energy of mode 16 vsfor 8=0.005. FIG. 3. Energy of mode 16 vsfor 8=0.1.

parameter3. For values of below the threshold for the

excitation of the adjacent mod¥/2—1, which is the first Ve recall that, if the OMSQy,, were stable then, from Eq.

mode to be excited, the energy of the madé2 remains (19, the sumq+qy., would always be zero. In Fig. 5, as

constant. For values g8 above the threshold, we have the " €xample, we report the sufs+dse as a function of
behaviors shown in Figs. 2 and 3, which refer to the valuedMe: AS can be seen from the figure, the instabilgym of
3=0.005 and 0.1, respectively. In these figures, and in alfn€ two coordinates different from zerappears when mode

the next figures which show the energy vs time, the energy 46 Starts to exchange energy with the other modes.
always normalized to the initial value @&y;,. As can be In this context, and to obtain more insight into the behav-

seen from the last figures, the mode 16 exchanges enerd (_)f an OMS, _it is r_eaIIy very intere_sting to see what t_he
npPositions of particles in the chain are, i.e. the spatial configu-

with other modes. According to the theory developed in™>> I i .
Refs.[18] and[19], for 3=0.005, we are above the thresh- ration of the chain, in correspondence with a well determined

old for the excitation of the adjacent mode 15 and the excivalué of energy of the OMS. In Fig. 6, fgs=0.005, the

tation of this mode, due to nonlinear coupling, triggers othervalues of the coordinates of the 32 atoms, in correspondence

linear modes. In Fig. 4 the behavior of the adjacent mode 18ith & particular value of the energy of mode 16, are shown.

is shown. The contemporary excitation of the other modes’ © Clarity, the representative points of the particles are

with smaller energy amplitudes, is also observed. We remarifined by segments. Figure 6 shows that the particle chain
recovers its “symmetrical form” ¢, +q,_,=0) when the

that the energy of the modg/2 is calculated with formula N

(14), while, for the other modes, the usual formu is  OMS recovers all its initial energy.

utilized. Of course, formuld6) is only indicative for large

excitation energy, when the variabl€y and P, lose their V. CASE N/2 AS A FUNCTION OF N
meaning of modal variables.

The initial time interval, necessary to excite, through In order to complete the analysis of the ca#@, in Fig.
computational errors, the other modes, depends obviously oh we show the behavior of the energy of this mode as a
the precision of numerical computations. All the previousfunction of time for various values &, for 8=0.005. From
numerical calculations have been performed in double precithis figure it emerges that the mobl¢é2 tends to exchange all
sion. We have observed that, working in simple precisionjts energy, by increasinyl. For N=52, this mode periodi-
the exchange of energy of the mod#d2 with the other cally loses and recovers almost all its energy. Nor52, the
modes occurs much earlier than in double precision. Howsecovery is not complete, and moreover the curve of energy
ever, since the mechanism is primed, it repeats with the sameersus time becomes irregular. The irregularity and complex-
properties either in double precision or in simple precision. ity of the curve increase witiN and, forN very large, the

The instability of the OMS can also be seen from anothesystem becomes probably chaotic.

point of view, by considering the Hamiltonian variablgs. Let us now consider formulé21), obtained analytically,
0.35 T T T 0.6
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0.3 1 04}
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0 FIG. 4. Energy of mode 1£)
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and let us see how we can numerically obtain the depen-
dence onN of the threshold valugs;. From the analysis of
the stability reported in Ref§18] and[19], we know that the
first modes excited, as the energy increases and the mode
N/2 becomes unstable, are the mod¥&2—1 andN/2+1.
Then for a given value o, starting from values of8 very
small, and integrating the motion equations for fairly long
times, we increase the value gfuntil the first pulse in the
energy of the mod&l/2—1 or, equivalently, the first sudden
change in the energy of the mo8ig2, appears. We assume
this value of 8 as the threshold valug,. In Fig. 8, the
numerical value of the produdi?g,, determined in this
way, is compared with the theoretical vala€/3 [formula
(21)] for N=6,8, . . .,64. A linear best fit of logs; vs logN,

for large N, gives a slope of-2.02. We notice the good
agreement of our results with EQ1).

®)

15 20 25 30 35

(d

FIG. 6. Values of the displace-
ments of atomq(b), (d), (f)] in
correspondence with the final
value of the energy(a), (c), (e)]
for N=32 andB=0.005.
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FIG. 7. Energy of the mode
N/2 vst for 5=0.005, for some
values ofN.
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We have also analyzed the case 0. We give here only from the casq.>0: the OMSs diverge fdi3|>|8;| and the
preliminary results. We obtain the same result found in Refother modes are not periodically excited.
[19], namely,|B,]—0.214 for large values oN. Moreover
the instability properties of the OMB/2 are very different

55 ' Numerical values — N3, N 2
Theoretical values ———— VI. CASES 4 ZN' 3 AND §N
5 L
Following the same procedure used in the chg2, we
45 | have calculated, numerically, the value @ffor the nonlin-
% ) ear OMSsN/4, (3/4)N, N/3, and (2/3N as functions ofN.
o We have found thap; is the same for the casé$/4 and
4r (3/4)N and the casehl/3 and (2/3N. This was foreseeable
since the nonlinear modé#/4, (3/4)N, andN/3, (2/3)N are
35 | symmetrical with respect to the modi&2, and so are iden-
tical if the initial excitation energy is the sanjeee Egs.
X o , (12—(14)]. _ i
0 10 20 30 50 60 70 Figure 9 shows the behavior of the prody&iN- as a

N

function of N, for the cased\N/2, N/3, and N/4, and the
theoretical estimate for the cabl2 given by formula(21).

FIG. 8. BN vs N for the OMSN/2. The theoretical curve The numerical results suggest a dependencg, ain N2,

refers to formula21).

for large values ofN, also for the OMSsN/3 and N/4.
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12 — ; - ' ' - of the nonlinear OMS is evident if we compare, for the same
11 L 1 integration time, the orbits in the plan€(,,Py/2) for the

5 same value ok=0.5 and two values ofi: =0, for the
linear case, angt=0.5, in the nonlinear case, which corre-
sponds to a value o8 very much larger tharB;=0.0033.
This different behavior is shown in Fig. 10.

Let us first consider the cadé¢/2. From Figs. 1-3, as
pointed out in Sec. IV, three regimes can be observed, vary-
N2 ing the produciB= eu. In the first regime, wher8< g, the
" 1 OMS is stable during the whole integration time.

. L 1 As soon asB exceedsB;, after an initial time interval,
/3 , depending on the precision of numerical calculations, during
0 10 20 30 40 50 60 70 which the OMS is stable, the amplification of errors excites
N the first modes which become unstable, namely, the modes
N/2—1 andN/2+1. Because of the nonlinear coupling be-
FIG. 9. BiN? vs N for the OMSsN/2, N/3, andN/4. tween the modes, the excitation of these two modes triggers
all the other linear modes. The characteristics of this second
regime, when the parametgrgrows, are the increasing ex-

We have numerically analyzed the stability of the OMSschange of energy between the nonlinear mode and the other
in the Fermi-Pasta-Ulam system. Previously, only for casdinear modes and the periodic recovery of energy of the non-
N/2 were a theoretical analysis of the stability and approxidinear mode. This regime continues as long as the periodic
mate estimates of the stability threshold for large valued of exchange of energy is complete. A further increasg afis-
available. Our method is based on a numerical integration dforts the profile of the curve of energy of the nonlinear mode,
full nonlinear differential equations of motion. The initial as a function of time, and the behavior of the system always
conditions for the Hamiltonian variableg andp, are such becomes more complex.
that only a particular nonlinear one-mode solution is initially ~ For large values oN, formula(21) gives a good estimate
excited. Noa priori initial perturbation of the analytical so- of the instability threshold, so we could try to explain the
lution is introduced in the numerical algorithm, the only per- “intermittent behavior” of the second regime in the frame-
turbation being that generated by computational errors in nuwork of the theory developed in RdfL8]. As we have seen
merical integration. With this method we study the stabilityin Sec. lll, modes witlp<1/3 are always stable in the linear
of the OMSs against the numerical errors introduced by th@pproximation. For example, for the calse=32 we have,
integration algorithm. We have accurately analyzed the castom Eqg. (20), that the modes with <7 are always stable,
N/2, which in some sense works as a test, since, for this castgr any energy of moda=N/2=16. These modes can grow
analytical results are available. only if they are triggered by the interaction with other un-

We remark that the OMSs are nonlinear analytical solu-stable modes. As pointed out in RgL8], this kind of inter-
tions of the complete Fermi-Pasta-Ulam system, with lineaglction is neglected in the linear approximation and comes
and nonlinear terms in the Hamiltonian, so their stabilityinto play only when unstable modes have grown and the
cannot be discussed in terms of the KAM theorem. The stalinearized theory is no longer valid. This indirect triggering
bility of linear modes and nonlinear OMSs, against compu-can be observed numerically if we compare, for example, the
tational errors, are completely disjoint in the sense that dime evolution of modes 16 and 6: no triggering of mode 6
linear mode, initially excited, is stable for very long integra- exists if < ;.
tion times, if the parameten is set equal to zero in the For 8> B;, in short time intervals, during which the non-
Hamiltonian. Thus the linear modes, excited during the evolinear one-mode exchanges energy with the other modes, the
lution of a nonlinear OMS, are triggered by the instability of time derivative of the energy of the OMS is not zero and Eq.
this nonlinear mode and then only indirectly by the compu-(10) and formula(14) are no longer valid. During these time
tational errors. This different behavior of the linear mode andntervals, a strong coupling exists between mdi2 and the
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FIG. 11. Energy of mode 15 wsfor 8=0.005.
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FIG. 13. o vst for Q.5, N=32, andeu=0.005.

modes. However, the exact mechanism by which the nonlin€dual to the period of (t). Let us consider Figs. 11 and 12
ear one-mode loses and recovers energy periodically is nd¢hich show, folN/2=16 andg=0.005, respectively the first
clear. We now try to give an explanation of this mechanismenergy pulse of mode 15 and the correspondent time varia-

in terms of Floquet's theorem for parametric oscillatorstion of Qis. . _
From numerical data we have verified that in the case of

[23,24]. Equation(19) is of the form

Eq. (18), we haveX,(t+T)=—X,(t) and soX,(t+2T)
dx? =X,(t), whereT is the period of the Jacobian function
— +f()x=0, (23)  cn?(Qyt;k). For B=0.005, from Eqs(12) and (13), we
dt have Q =~ wyjp and cn?(Qyst;K) ~coSwoy,st. Since wy),

wheref(t) is a periodic function of time with period. Flo-
guet’s theorem means that the solution of E2@) can be
written as

=2, the period of cdsis 7/2 and so = . From Eq.(25),
comparing the values @5 each interval of Z= 7, we can
obtain the value of the parametkf which determines the
stability or instability of the solution. The pulsed behavior of

X (1) =AVTX (1), (24)  the energy of the nonlinear OMS and the consequent pulsed
behavior of the linear modes, wheg> B;, can then be at-
wherer=1 or 2,A\,=1, andX,(t+T)=*=X,(t). The ap- tributed to the time variation ok, during the exchange of
propriate sign in front o, (t) is determined by the particu- energy between the nonlinear one-mode and the other linear
lar form of f(t). With the minus sign one ha¥ (t+2T)  modes, when E¢(18) is no longer exactly valid. If we sup-

=X,(t). Solution(24) also means that

pose that the OM®) ¢ continues to oscillate with its normal

frequency, but modulated in amplitude, during the energy
X (t+T) =N, % (1). (25 exchange, the parameter varies, causing the typical pulsed
) ) behavior forg> B, . Furthermore, since the period Qﬁg, is
Thus the values ok(t), in successive cycles, depends on \ye have the small energy fluctuations of period /2 in
factor A, when the time interval between the observations i energy pulse of mode 15 shown in Fig. 118lis very

large, many linear modes are involved, the exchange of en-

0.6 T T T

ergy is much greater and irreversible and the OMS does not

recover all its initial energy.

In Fig. 13 the time behavior of the paramelgris shown

for the solutionQ45, when the one-mod@,, is excited, for

15

-0.6 L L . . 1 | |

| |
A A R Ml AR i N=32 and=0.005. With reference to Fig. 12, the values

0 ‘ I R | ‘ il il 1‘] of A, are obtained calculating the ratio between two consecu-
0 i“‘l‘ Il f | n [ VA il tive maxima ofQ,5. From Figs. 12 and 13 the link is clear
I TR w I il i ‘ between the exponential growth and the subsequent expo-

‘ nential decrease @5 with the variation of the parameter

from values greater than 1 to smaller than 1.
We conclude this discussion, giving a short account of the

FPU « system, which, as is well known, has very different

3800 3850 3900 3950 4000 4050 4100 4150 4200 features from the FP\B system. In fact we remark that, for

Time t

the a system, it is the quantitgu? (and noteu as in theg

case which is invariant under the symmet(gcalg transfor-

FIG. 12. Q45 vst for 3=0.005.
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where\ is the scale parameter. Then the dynamical propersults already known for cadé/2, and allows one to obtain
ties of the system are invariant far— — . This implies  the threshold energy density, above which the OMS is un-
that the stability of the OMSs does not depend on the sign o$table, in the other cases, namely, the calié$, N/3,

w. Here we give some preliminary results. Our numerical(2/3)N, and (4/3N.

experiments show that, for==*1, the threshold energy We have found that, for each case, there is a characteristic
density goes to the constant value 0.184 for lakgeThis ~ value B of the productew, between the energy density
result is in disagreement with that of RE£9], where for the ~@nd the nonlinearity parametgr, above which there is a
threshold energy per particle, far=1, the relationg,/N  large range of values o8 in which the OMS presents an
~0.8418N was obtained, while it agrees with the result of intermittent behavior. For these values @f the nonlinear
Ref. [21]. The value 0.184 of the threshold energy densitymOde keeps its initial excitation energy for long times and

corresponds indeed to the value 0.303 of the paranejerf periodically, abruptly, loses and recovers a fraction of this
Ref. [21]. energy. We have verified that, for the cd$&, the value of

B: coincides, for largeN, with the threshold value, above
which the OMS is instable, given by E(1). Then we have
assumed this characteristic value as threshold value also in
In this paper we have numerically studied the problem ofthe other cases. We have also verified that, varjiihdhe
stability of OMSs in the Fermi-Pasta-Ulag system. Al- casesN/3 and5N andN/4 and3N have the same threshold
though this problem has been tackled many times in the lastalue B;. A tentative explanation of the intermittent behav-
few years, analytical results were available only for the caséor, in terms of Floquet’s theorem for parametric oscillators,
N/2, whereN is the number of particles in the chain. We has been given.
have envisaged a simple numerical method, which tests the As concerns the FPUd system we have shown in particu-
stability of solutions against the numerical errors introducedar that the dynamical properties are independent of the sign
automatically by the numerical algorithm of integration of of the nonlinearity parameter and that, for large\, there is
motion equations. The method reproduces the analytical rean energy density threshold constant, different from zero.
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