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Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system

A. Cafarella, M. Leo, and R. A. Leo
Dipartimento di Fisica dell’Universita`, 73100 Lecce, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, Italy

~Received 10 July 2003; revised manuscript received 30 October 2003; published 14 April 2004!

The stability of the one-mode nonlinear solutions of the Fermi-Pasta-Ulamb system is numerically inves-
tigated. No external perturbation is considered for the one-mode exact analytical solutions, the only perturba-
tion being that introduced by computational errors in the numerical integration of motion equations. The
threshold energy for the excitation of the other normal modes and the dynamics of this excitation are studied
as a function of the parameterm characterizing the nonlinearity, the energy densitye and the numberN of
particles of the system. The results achieved confirm in part previous ones, obtained with a linear analysis of
the problem of the stability, and clarify the dynamics by which a one-mode exchanges energy with the other
modes with increasing energy density. In a range of energy density near the threshold value and for various
values of the number of particlesN, the nonlinear one-mode exchanges energy with the other linear modes for
a very short time, immediately recovering all its initial energy. This sort of recurrence is very similar to Fermi
recurrences, even if in the Fermi recurrences the energy of the initially excited mode changes continuously and
only periodically recovers its initial value. A tentative explanation for this intermittent behavior, in terms of
Floquet’s theorem, is proposed. Preliminary results are also presented for the Fermi-Pasta-Ulama system
which show that there is a stability threshold, for largeN, independent ofN.

DOI: 10.1103/PhysRevE.69.046604 PACS number~s!: 05.45.Pq
la
ol
e
in

ed

o

em

th

d
f a
od
o

n

e
s

e
ct
s
n

ate
bil-

al
l

. In
nt
de-

e
il-

m.
full

e
the
er-
is
us
the
-
ear
n a
of
e,

ear
al-
I. INTRODUCTION

Since the computer experiment of Fermi, Pasta, and U
~FPU! @1#, many theoretical and numerical investigations f
lowed to explain the unexpected results of the experim
@2–7#. What one expected according to a theorem of Po
carè @8# and a theorem proved by Fermi@9# himself in his
youth, and what was instead observed, has been describ
several papers~see, e.g., Ref.@10#! in which various aspects
of the experiment have been analyzed in the framework
the KAM theorem@11#, the ergodic problem@12#, statistical
mechanics, and the chaotic behavior of dynamical syst
@13–15#.

It is well known @16,17# that, for a periodic FPUb chain
with an even number of oscillators, an initial condition wi
only a set of excited modes, all having even~odd! indices
only, cannot lead to the excitation of modes having o
~even! indices. This means that, if one considers the set o
modes partitioned in the two subsets of the even and
modes, an initial excitation, completely contained in one
the two subsets, cannot propagate to the other.

There are also other partitions. For example, partitio
exist for which a subset contains one mode only@18#. More
specifically, for each of the modes

n5
N

4
;

N

3
;

N

2
;

2

3
N;

3

4
N, ~1!

@of course whenN has the divisibility property required forn
in Eq. ~1! to be an integer# one has that, if only one of thes
modes is initially excited, it remains excited without tran
ferring energy to any other mode.

An important problem is obviously the stability of thes
one-mode solutions~OMSs!, since it is reasonable to expe
some relation between the loss of their stability and the on
of chaos in the system. In some sense, the destabilizatio
1539-3755/2004/69~4!/046604~10!/$22.50 69 0466
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the nonlinear modes can provide an ‘‘upper bound’’ estim
for the onset of large scale chaos. The analysis of the sta
ity of a generic OMS is very difficult from a mathematic
point of view. Only for the casen5N/2 are there analytica
results~see, for example, Refs.@18–21#! which estimate the
threshold energy density for the mode to become unstable
fact the moden5N/2 is the simplest one, since the differe
components of the perturbation, in modal space, are all
coupled and are described by a single Lame´ equation.

In this paper we numerically revisit the problem of th
stability of OMSs. We make a numerical study of the stab
ity of OMSs as a function of the numberN of particles and
the productem, wheree is the energy density andm is the
parameter of nonlinearity in the Hamiltonian of the syste
The analysis, based on the numerical integration of the
nonlinear FPU model, is extensively made for the casem
.0. Preliminary results are also presented for the casm
,0. No external perturbation is considered for the OMS,
only perturbation being that introduced by computational
rors in numerical integration of motion equations. Th
simple method works very well: our results confirm previo
ones obtained with a linear analysis of the problem of
stability @18–21# and clarify the dynamics by which a non
linear one-mode exchanges energy with the other lin
modes, with increasing energy densities. We find that, i
large range of initial excitation energy density, the energy
the OMSs remains constant for very long intervals of tim
and for short intervals there is partial transfer to other lin
modes; furthermore the OMSs corresponding to the two v
uesn5N/4 andn5 3

4 N and the OMSs corresponding ton
5N/3 andn5 2

3 N have the same stability properties.
As regards the FPUa system, we find that the OMSN/2

is not always instable for very large values ofN, independent
of the sign of the nonlinearity parameterm. Our results are in
disagreement with those of Ref.@19# and in agreement with
those of Ref.@21#.
©2004 The American Physical Society04-1
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II. FPU SYSTEM

The FPU system is a one-dimensional chain of oscillat
~with unit mass!, with a weakly nonlinear nearest-neighb
interaction. Callingqn and pn the coordinates and the mo
menta of the oscillators, we have the Hamiltonian

H5
1

2 (
k51

N

pk
21

1

2 (
k51

N

~qk112qk!
21

m

r (
k51

N

~qk112qk!
r ,

~2!

with r 53 for the FPUa system,r 54 for the FPUb system,
andqN115q1 in both cases. We remark that all quantities
Eq. ~2! are dimensionless.

If we introduce the normal coordinatesQk andPk of the
normal modes through the relations

Qk5(
j 51

N

Sk jqj , ~3!

Pk5(
j 51

N

Sk jpj , ~4!

Sk j5
1

AN
S sin

2pk j

N
1cos

2pk j

N D , ~5!

the harmonic energy of modek is

Ek5
1

2
~Pk

21vk
2Qk

2!, ~6!

where, in the case of periodic boundary conditions,

v2
k54 sin2

pk

N
. ~7!

Sincevk5vN2k , there are onlyN/2 different frequencies~if
we assumeN even, for simplicity!.

From Eq.~2!, the Hamilton equations are obtained in t
variablesqk andpk , which, integrated by standard method
allow one to calculate the normal modes and the energ
each mode.

III. ONE-MODE SOLUTIONS

From now on we refer only to the FPUb system. For
m50, all normal modes oscillate independently and th
energiesEk are constants of motion. In the anharmonic ca
(mÞ0), the normal modes are instead coupled and the v
ablesQk do not have simple sinusoidal oscillations. The d
ferential equation for thekth mode is@18#

Qk

..

52vk
2Qk2

mvk

2N (
i , j ,l

N21

v iv jv lCki j l QiQjQl

~k51, . . . ,N21!, ~8!

where
04660
s

,
of

ir
e
ri-

Ci jkl 52n i 1 j 1k1 l1n i 1 j 2k2 l1n i 2 j 1k2 l1n i 2 j 2k1 l ,

~9!

beingnk5(21)m for k5mN, if m is a positive integer, and
nk50 otherwise.

The nonlinear OMSs correspond to the values ofn re-
ported in Eq.~1!. From Eqs.~8! and ~9!, one deduces@18#
that, if only one of these modes is initially excited, it remai
excited without transferring energy to any other mode. In t
case, the equation of motion for the excited mode amplitu
Qn is

Q̈n52vn
2Qn2

mvn
4Cnnnn

2N
Qn

3 . ~10!

If we assume that at timet50 QnÞ0 and Pn50, the
solution of Eq.~10! is

Qn~ t !5A cn~Vnt,k!, ~11!

whereVn and the modulusk of the Jacobi elliptic function
cn both depend onA:

Vn5vnA11dnA2, ~12!

k5A dnA2

2~11dnA2!
, ~13!

with dn5mvn
2Cnnnn/2N.

Solution ~11! is periodic with periodTn54K(k)/Vn
whereK(k) is the complete elliptic integral of the first kind
The energy of the mode is

En5
1

2 S Pn
21vn

2Qn
21m

vn
4Qn

4Cnnnn

4N D . ~14!

The stability properties of the nonlinear modeN/2 was
studied analytically some years ago. In Ref.@19#, the stabil-
ity analysis of this mode starts from the equations of mot
for the variablesqk . From Eq.~3! and the properties ofSk j
one has, if the only excited mode is the modeN/2:

qk5
1

AN
~21!k QN/2 , k51,2, . . . ,N. ~15!

These relations imply that the equations of motion reduce
a single equation, describing the anharmonic oscillations
each particle, whose solution is the Jacobi elliptic cos
function. Perturbing this solution, and passing to norm
modes variablesQk one obtains a Lame´ equation. The sta-
bility of the solutions of this equation, which is an examp
of Hill’s equation, and then the stability of the modeN/2, is
studied with the Floquet theory. A numerical analysis sho
that the first modes which are excited, as the energy den
increases, are the modesk5N/221 andN/211. A simple
approximate formula, valid for largeN and m51, and de-
rived approximating Hill’s matrix with a 333 matrix, gives,
for the threshold energy density,
4-2
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e t5
Et

N
5

3.226

N2
10~N24!. ~16!

The problem of stability of the modeN/2 was also tackled in
Ref. @20#. In the limit of largeN, the formula

e t5
Et

N
5

p2

3N2
'

3.29

N2
~17!

was derived for the threshold energy density. This resul
slightly different from Eq.~16! and the small difference is
probably due to the rough estimate of the eigenvalue sp
trum of the Hill’s matrix in Ref.@19#.

The problem of stability of an OMS was reconsider
subsequently in Ref.@18# with a detailed analysis of the
mode N/2. This is the simplest case, because, as we h
seen, the different components of the perturbation, in mo
space, are all decoupled and can be reduced to the s
Laméequation

ẍr52v r
2F11

12mA2cn2~VN/2t;k!

N Gxr , r 51, . . . ,N21.

~18!

To obtain this equation in a very simple way, we obse
that, from Eq.~2!, with r 54, one has

ṗk5qk111qk2122qk1m@~qk112qk!
32~qk2qk21!3#.

If the coordinatesqk are affected by some error, then th
error on theṗk, n ṗk, will be

n ṗk5nqk111nqk2122nqk13m@~qk112qk!
2

3~nqk112nqk!2~qk2qk21!2~nqk2nqk21!#,

and then from Eq.~15! we have

n ṗk5nqk111nqk2122nqk1
12m

N
Q2

N/2

3@nqk111nqk2122nqk#.

Sincenq̇k5npk , the last equation reads:

nq̈k5F11
12m

N
Q2

N/2G@nqk1122nqk1nqk21#.

Passing to modal variablesQk , we finally have

nQ̈k52v2
kF11

12m

N
Q2

N/2GnQk , ~19!

which is Eq.~18!.
Let b5em. As it is well known, this parameter is invar

ant under the scale transformation:pk→lN21pk , qk
→lN21qk and m→l22N2m, wherel is the scale param
eter. So the dynamics of the FPUb system depends only o
the control parameterb5em.

Let us introduce the quantity
04660
is

c-

ve
al
gle

e

r5sin2~pr /N!, ~20!

wherer is the mode number. The main results of the stabi
analysis reported in Ref.@18# are as follows.

~a! For each mode havingr.1/3, there is a threshold
valueb t of b above which the nonlinear moden5N/2 pre-
sents an instability, causing the growth of the mode cor
sponding tor, through parametric resonance.

~b! Conversely, modes withr,1/3 ~i.e., r /N,0.196) are
always stable in the linear approximation for any energy d
sity of moden5N/2, so that perturbations of this mode in
volving only modes withr,1/3 never lead to instability.
These modes, as well as modes withr.1/3, whenb,b t ,
can grow only if they are triggered by the interaction wi
other modes which are unstable.

~c! For N>4 there are always modes withr.1/3, so that
the modeN/2 can never be stable for all energy densitie
Sinceb t is a decreasing function ofr, the first modes to go
unstable, whenb is increased from zero, are the modesr
5N/221 and r 5N/211, for which r5cos2(p/N). There-
fore, for each~even! numberN of particles, there is a non
zero value ofb t , a function ofN, below which the nonlinear
mode N/2 is stable. This value tends to zero forN→`,
namely,r→1.

~d! Using a power series expansion, one obtains, forb t
the formula,

b t5
p2

3N2
10~N24!, ~21!

which confirms theN22 dependence found in Refs.@19# and
@20# and the numerical valuep2/3 of the coefficient of 1/N2

in Ref. @20#.

IV. NUMERICAL RESULTS FOR THE CASE NÕ2

In this section, we present the results of our numeri
analysis of the stability of the OMS corresponding ton
5N/2, as a function ofb and of the numberN of particles,
based on the numerical integration of the full nonlinear F
model directly in variablesqk and pk . More precisely, we
integrate the equations of motion in the variablesqk andpk
by means of a bilinear symplectic algorithm of the third o
der, adapted from an algorithm employed previously by C
setti @22#. Initial conditions for the variablesqk and pk are
obtained in the following way. We excite the OMS, att
50, always puttingQN/2Þ0 andPN/250. In all numerical
experiments we fixm50.1 and change the value of the e
ergy densitye5EN/2 /N, where

EN/25
1

2 S PN/2
2 1vN/2

2 QN/2
2 1m

vN/2
4 QN/2

4

2N D ~22!

is the energy of the nonlinear one-modeN/2. If we fix the
initial value of EN/2 ~or equivalentlye), the initial value of
QN/2 is obtained from Eq.~22! with PN/250. Finally, from
inverse transformations of Eqs.~3! and ~4!, the values of
qk(0) andpk(0) are obtained.
4-3
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FIG. 1. P16 vs Q16 @~a!, ~c!,
~e!# andQ16 vs t @~b!, ~d!, ~f!# for
three values ofb.
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The normal coordinatesQN/2 and PN/2 of the nonlinear
one-mode and the normal coordinatesQk andPk of the other
normal modes are calculated at fixed time intervals, m
tiples of the integration step. Then the study of the stabi
of the OMS is made through the analysis of both the ti
evolution of QN/2 and PN/2 and the evolution of the othe
modesQk and Pk which are generated through comput
tional errors.

For the numerical integration, we use an integration ti
stepnt equal to 0.01. This value is approximately 1/300
the smallest period of oscillation in the harmonic case a
allows us to obtain a control of the total energyE of the
lattice, which ensures a relative errornE/E,1026.

To illustrate the various steps of our method of numeri
analysis, let us consider the caseN532 and thus the OMS
N/2516. In this caseCnnnn52, and we have formula~22!
for the energy of the nonlinear mode. We take a value of
energy densitye and integrate the equations of motion f
the variablesqk andpk . The integration time is fixed in suc
a way as to observe the instability of nonlinear mode, if
value ofb5em is greater than the theoretical valueb t @Eq.
~21!#. Typical values of this time are of order 106nt.
04660
l-
y
e

e
f
d

l

e

e

For N532, we haveb t5p2/3N250.00321. We conside
three values ofb: the first one,b50.001, smaller thanb t ,
the second one,b50.005, larger and the third,b50.1,
much larger thanb t . In Fig. 1, the behavior of the nonlinea
mode in the plane (Q16,P16) andQ16 as a function of time,
for these three values ofb, are shown.

From an inspection of this figure, we observe that,
very smallb, specifically well below the threshold value, th
nonlinear OMSN/2 is stable andQ16 is a periodic function
with the same amplitude and same period of the analyt
solution. Forb50.005, above the threshold, the situation
very different. The period of oscillation is equal to the peri
of the analytical solution and, for very long times, the rep
sentative point moves on a closed curve, in the plane (Q16,
P16) as for values of very smallb; but now, periodically and
for short intervals of time, the amplitude of the oscillatio
varies, due to a decrease of the modal energy, and the re
sentative point of the system moves on an open curve wh
tends periodically to shrink. Forb50.1, well aboveb t , we
observe a behavior which is probably chaotic. This behav
is also evident if we analyze the modal energy of the mo
N/2 as a function of time for different values of th
4-4



e
ue
a
y

er
in

h-
c

he
1

e
a

gh
y
us
ec
on

w
am
n
he

.
s

v-
e

gu-
ed

nce
n.

are
ain

s a

ll

rgy
ex-
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parameterb. For values ofb below the threshold for the
excitation of the adjacent modeN/221, which is the first
mode to be excited, the energy of the modeN/2 remains
constant. For values ofb above the threshold, we have th
behaviors shown in Figs. 2 and 3, which refer to the val
b50.005 and 0.1, respectively. In these figures, and in
the next figures which show the energy vs time, the energ
always normalized to the initial value ofEN/2 . As can be
seen from the last figures, the mode 16 exchanges en
with other modes. According to the theory developed
Refs.@18# and @19#, for b50.005, we are above the thres
old for the excitation of the adjacent mode 15 and the ex
tation of this mode, due to nonlinear coupling, triggers ot
linear modes. In Fig. 4 the behavior of the adjacent mode
is shown. The contemporary excitation of the other mod
with smaller energy amplitudes, is also observed. We rem
that the energy of the modeN/2 is calculated with formula
~14!, while, for the other modes, the usual formula~6! is
utilized. Of course, formula~6! is only indicative for large
excitation energy, when the variablesQk and Pk lose their
meaning of modal variables.

The initial time interval, necessary to excite, throu
computational errors, the other modes, depends obviousl
the precision of numerical computations. All the previo
numerical calculations have been performed in double pr
sion. We have observed that, working in simple precisi
the exchange of energy of the modeN/2 with the other
modes occurs much earlier than in double precision. Ho
ever, since the mechanism is primed, it repeats with the s
properties either in double precision or in simple precisio

The instability of the OMS can also be seen from anot
point of view, by considering the Hamiltonian variablesqk .

FIG. 2. Energy of mode 16 vst for b50.005.
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We recall that, if the OMSQN/2 were stable then, from Eq
~15!, the sumqk1qk11 would always be zero. In Fig. 5, a
an example, we report the sumq151q16 as a function of
time. As can be seen from the figure, the instability~sum of
the two coordinates different from zero! appears when mode
16 starts to exchange energy with the other modes.

In this context, and to obtain more insight into the beha
ior of an OMS, it is really very interesting to see what th
positions of particles in the chain are, i.e. the spatial confi
ration of the chain, in correspondence with a well determin
value of energy of the OMS. In Fig. 6, forb50.005, the
values of the coordinates of the 32 atoms, in corresponde
with a particular value of the energy of mode 16, are show
For clarity, the representative points of the particles
joined by segments. Figure 6 shows that the particle ch
recovers its ‘‘symmetrical form’’ (qk1qk2150) when the
OMS recovers all its initial energy.

V. CASE NÕ2 AS A FUNCTION OF N

In order to complete the analysis of the caseN/2, in Fig.
7 we show the behavior of the energy of this mode a
function of time for various values ofN, for b50.005. From
this figure it emerges that the modeN/2 tends to exchange a
its energy, by increasingN. For N552, this mode periodi-
cally loses and recovers almost all its energy. ForN.52, the
recovery is not complete, and moreover the curve of ene
versus time becomes irregular. The irregularity and compl
ity of the curve increase withN and, for N very large, the
system becomes probably chaotic.

Let us now consider formula~21!, obtained analytically,

FIG. 3. Energy of mode 16 vst for b50.1.
FIG. 4. Energy of mode 15~a!
andQ15 ~b! vs t for b50.005.
4-5
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FIG. 5. q151q16 vs t for b50.005 when mode 16 is initially
excited.
04660
and let us see how we can numerically obtain the dep
dence onN of the threshold valueb t . From the analysis of
the stability reported in Refs.@18# and@19#, we know that the
first modes excited, as the energy increases and the m
N/2 becomes unstable, are the modesN/221 andN/211.
Then for a given value ofN, starting from values ofb very
small, and integrating the motion equations for fairly lon
times, we increase the value ofb until the first pulse in the
energy of the modeN/221 or, equivalently, the first sudde
change in the energy of the modeN/2, appears. We assum
this value ofb as the threshold valueb t . In Fig. 8, the
numerical value of the productN2b t , determined in this
way, is compared with the theoretical valuep2/3 @formula
~21!# for N56,8, . . .,64. A linear best fit of logbt vs logN,
for large N, gives a slope of22.02. We notice the good
agreement of our results with Eq.~21!.
-

l

FIG. 6. Values of the displace
ments of atoms@~b!, ~d!, ~f!# in
correspondence with the fina
value of the energy@~a!, ~c!, ~e!#
for N532 andb50.005.
4-6
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FIG. 7. Energy of the mode
N/2 vs t for b50.005, for some
values ofN.
e

We have also analyzed the casem,0. We give here only

preliminary results. We obtain the same result found in R
@19#, namely,ub tu→0.214 for large values ofN. Moreover
the instability properties of the OMSN/2 are very different

FIG. 8. b tN
2 vs N for the OMS N/2. The theoretical curve

refers to formula~21!.
04660
f.
from the casem.0: the OMSs diverge forubu.ub tu and the
other modes are not periodically excited.

VI. CASES
N
4

,
3
4

N,
N
3

, AND
2
3

N

Following the same procedure used in the caseN/2, we
have calculated, numerically, the value ofb t for the nonlin-
ear OMSsN/4, (3/4)N, N/3, and (2/3)N as functions ofN.
We have found thatb t is the same for the casesN/4 and
(3/4)N and the casesN/3 and (2/3)N. This was foreseeable
since the nonlinear modesN/4, (3/4)N, andN/3, (2/3)N are
symmetrical with respect to the modeN/2, and so are iden-
tical if the initial excitation energy is the same@see Eqs.
~12!–~14!#.

Figure 9 shows the behavior of the productb tN
2 as a

function of N, for the casesN/2, N/3, and N/4, and the
theoretical estimate for the caseN/2 given by formula~21!.
The numerical results suggest a dependence ofb t on N22,
for large values ofN, also for the OMSsN/3 and N/4.
4-7
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VII. DISCUSSION

We have numerically analyzed the stability of the OM
in the Fermi-Pasta-Ulam system. Previously, only for c
N/2 were a theoretical analysis of the stability and appro
mate estimates of the stability threshold for large values oN
available. Our method is based on a numerical integratio
full nonlinear differential equations of motion. The initia
conditions for the Hamiltonian variablesqk andpk are such
that only a particular nonlinear one-mode solution is initia
excited. Noa priori initial perturbation of the analytical so
lution is introduced in the numerical algorithm, the only pe
turbation being that generated by computational errors in
merical integration. With this method we study the stabil
of the OMSs against the numerical errors introduced by
integration algorithm. We have accurately analyzed the c
N/2, which in some sense works as a test, since, for this c
analytical results are available.

We remark that the OMSs are nonlinear analytical so
tions of the complete Fermi-Pasta-Ulam system, with lin
and nonlinear terms in the Hamiltonian, so their stabil
cannot be discussed in terms of the KAM theorem. The
bility of linear modes and nonlinear OMSs, against comp
tational errors, are completely disjoint in the sense tha
linear mode, initially excited, is stable for very long integr
tion times, if the parameterm is set equal to zero in the
Hamiltonian. Thus the linear modes, excited during the e
lution of a nonlinear OMS, are triggered by the instability
this nonlinear mode and then only indirectly by the comp
tational errors. This different behavior of the linear mode a

FIG. 9. b tN
2 vs N for the OMSsN/2, N/3, andN/4.
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of the nonlinear OMS is evident if we compare, for the sa
integration time, the orbits in the plane (QN/2,PN/2) for the
same value ofe50.5 and two values ofm: m50, for the
linear case, andm50.5, in the nonlinear case, which corre
sponds to a value ofb very much larger thanb t50.0033.
This different behavior is shown in Fig. 10.

Let us first consider the caseN/2. From Figs. 1–3, as
pointed out in Sec. IV, three regimes can be observed, v
ing the productb5em. In the first regime, whereb,b t , the
OMS is stable during the whole integration time.

As soon asb exceedsb t , after an initial time interval,
depending on the precision of numerical calculations, dur
which the OMS is stable, the amplification of errors excit
the first modes which become unstable, namely, the mo
N/221 andN/211. Because of the nonlinear coupling b
tween the modes, the excitation of these two modes trigg
all the other linear modes. The characteristics of this sec
regime, when the parameterb grows, are the increasing ex
change of energy between the nonlinear mode and the o
linear modes and the periodic recovery of energy of the n
linear mode. This regime continues as long as the perio
exchange of energy is complete. A further increase ofb dis-
torts the profile of the curve of energy of the nonlinear mo
as a function of time, and the behavior of the system alw
becomes more complex.

For large values ofN, formula ~21! gives a good estimate
of the instability threshold, so we could try to explain th
‘‘intermittent behavior’’ of the second regime in the fram
work of the theory developed in Ref.@18#. As we have seen
in Sec. III, modes withr,1/3 are always stable in the linea
approximation. For example, for the caseN532 we have,
from Eq. ~20!, that the modes withr ,7 are always stable
for any energy of moden5N/2516. These modes can grow
only if they are triggered by the interaction with other u
stable modes. As pointed out in Ref.@18#, this kind of inter-
action is neglected in the linear approximation and com
into play only when unstable modes have grown and
linearized theory is no longer valid. This indirect triggerin
can be observed numerically if we compare, for example,
time evolution of modes 16 and 6: no triggering of mode
exists if b,b t .

For b.b t , in short time intervals, during which the non
linear one-mode exchanges energy with the other modes
time derivative of the energy of the OMS is not zero and E
~10! and formula~14! are no longer valid. During these tim
intervals, a strong coupling exists between modeN/2 and the
FIG. 10. Orbits in the plane
(Q16,P16) for the linear case (m
50) with e50.5 ~a! and for the
nonlinear casem50.1 with e
50.5 ~b!.
4-8
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two adjacent modes and, indirectly, with all the other line
modes. However, the exact mechanism by which the non
ear one-mode loses and recovers energy periodically is
clear. We now try to give an explanation of this mechani
in terms of Floquet’s theorem for parametric oscillato
@23,24#. Equation~19! is of the form

dx2

dt2
1 f ~ t !x50, ~23!

where f (t) is a periodic function of time with periodT. Flo-
quet’s theorem means that the solution of Eq.~23! can be
written as

xr~ t !5l r
t/TXr~ t !, ~24!

wherer 51 or 2,l1l251, andXr(t1T)56Xr(t). The ap-
propriate sign in front ofXr(t) is determined by the particu
lar form of f (t). With the minus sign one hasXr(t12T)
5Xr(t). Solution~24! also means that

xr~ t1T!5l rxr~ t !. ~25!

Thus the values ofxr(t), in successive cycles, depends
factor l r when the time interval between the observations

FIG. 11. Energy of mode 15 vst for b50.005.

FIG. 12. Q15 vs t for b50.005.
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equal to the period off (t). Let us consider Figs. 11 and 1
which show, forN/2516 andb50.005, respectively the firs
energy pulse of mode 15 and the correspondent time va
tion of Q15.

From numerical data we have verified that in the case
Eq. ~18!, we haveXr(t1T)52Xr(t) and so Xr(t12T)
5Xr(t), where T is the period of the Jacobian functio
cn2(VN/2t;k). For b50.005, from Eqs.~12! and ~13!, we
have VN/2'vN/2 and cn2(VN/2t;k)'cos2vN/2t. SincevN/2
52, the period of cos2 is p/2 and so 2T5p. From Eq.~25!,
comparing the values ofQ15 each interval of 2T5p, we can
obtain the value of the parameterl r which determines the
stability or instability of the solution. The pulsed behavior
the energy of the nonlinear OMS and the consequent pu
behavior of the linear modes, whenb.b t , can then be at-
tributed to the time variation ofl r during the exchange o
energy between the nonlinear one-mode and the other li
modes, when Eq.~18! is no longer exactly valid. If we sup
pose that the OMSQ16 continues to oscillate with its norma
frequency, but modulated in amplitude, during the ene
exchange, the parameterl r varies, causing the typical pulse
behavior forb.b t . Furthermore, since the period ofQ15

2 is
T, we have the small energy fluctuations of periodT5p/2 in
the energy pulse of mode 15 shown in Fig. 11. Ifb is very
large, many linear modes are involved, the exchange of
ergy is much greater and irreversible and the OMS does
recover all its initial energy.

In Fig. 13 the time behavior of the parameterl r is shown
for the solutionQ15, when the one-modeQN/2 is excited, for
N532 andb50.005. With reference to Fig. 12, the value
of l r are obtained calculating the ratio between two conse
tive maxima ofQ15. From Figs. 12 and 13 the link is clea
between the exponential growth and the subsequent e
nential decrease ofQ15 with the variation of the parameterl r
from values greater than 1 to smaller than 1.

We conclude this discussion, giving a short account of
FPU a system, which, as is well known, has very differe
features from the FPUb system. In fact we remark that, fo
the a system, it is the quantityem2 ~and notem as in theb
case! which is invariant under the symmetry~scale! transfor-
mation qk→lN21qk , pk→lN21pk , and m→l21Nm,

FIG. 13. m vs t for Q15, N532, andem50.005.
4-9
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wherel is the scale parameter. Then the dynamical prop
ties of the system are invariant form→2m. This implies
that the stability of the OMSs does not depend on the sig
m. Here we give some preliminary results. Our numeri
experiments show that, form561, the threshold energy
density goes to the constant value 0.184 for largeN. This
result is in disagreement with that of Ref.@19#, where for the
threshold energy per particle, form51, the relationEt /N
'0.8418/N was obtained, while it agrees with the result
Ref. @21#. The value 0.184 of the threshold energy dens
corresponds indeed to the value 0.303 of the parameterL3 of
Ref. @21#.

VIII. CONCLUSIONS

In this paper we have numerically studied the problem
stability of OMSs in the Fermi-Pasta-Ulamb system. Al-
though this problem has been tackled many times in the
few years, analytical results were available only for the c
N/2, whereN is the number of particles in the chain. W
have envisaged a simple numerical method, which tests
stability of solutions against the numerical errors introduc
automatically by the numerical algorithm of integration
motion equations. The method reproduces the analytica
-

,

I,
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sults already known for caseN/2, and allows one to obtain
the threshold energy density, above which the OMS is
stable, in the other cases, namely, the casesN/4, N/3,
(2/3)N, and (4/3)N.

We have found that, for each case, there is a character
value b t of the productem, between the energy densitye
and the nonlinearity parameterm, above which there is a
large range of values ofb in which the OMS presents a
intermittent behavior. For these values ofb, the nonlinear
mode keeps its initial excitation energy for long times a
periodically, abruptly, loses and recovers a fraction of t
energy. We have verified that, for the caseN/2, the value of
b t coincides, for largeN, with the threshold value, abov
which the OMS is instable, given by Eq.~21!. Then we have
assumed this characteristic value as threshold value als
the other cases. We have also verified that, varyingN, the
casesN/3 and 2

3 N andN/4 and 3
4 N have the same threshol

valueb t . A tentative explanation of the intermittent beha
ior, in terms of Floquet’s theorem for parametric oscillato
has been given.

As concerns the FPUa system we have shown in particu
lar that the dynamical properties are independent of the s
of the nonlinearity parameterm and that, for largeN, there is
an energy density threshold constant, different from zero
g.
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